TECHNICAL ENGINEERING BULLETIN

Strong-Bolt[®] 2 Design Information — Concrete

- Strong-Bolt 2 (STB2) has been tested per ACI 355.2 and AC193.
- These tables provide tension and shear capacities for design using strength level or allowable load capacities. The footnotes of each table further explain how the design strength capacities were calculated and what factors were used to calculate the allowable load capacities. For additional information, please refer to Anchor Designer software and or contact Simpson Strong-Tie.

Table of Contents

Icons and Nomenclature
Zinc-Plated Carbon Steel Strong-Bolt® 2 Tension Design Strengths in Normal-Weight Concrete
Zinc-Plated Carbon Steel Strong-Bolt [®] 2 Allowable Tension Loads in Normal-Weight Concrete:
• Static Load
• Wind Load
Seismic Load6
Zinc-Plated Carbon Steel Strong-Bolt® 2 Shear Design Strengths in Normal-Weight Concrete
Zinc-Plated Carbon Steel Strong-Bolt [®] 2 Allowable Shear Loads in Normal-Weight Concrete:
• Static Load
• Wind Load
Seismic Load
Zinc-Plated Carbon Steel Strong-Bolt [®] 2 Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies
Zinc-Plated Carbon Steel Strong-Bolt [®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies:
• Static Load10
Wind Load11
Seismic Load

Stainless Steel Strong-Bolt® 2 Tension Design Strengths in Normal-Weight Concrete
Stainless Steel Strong-Bolt [®] 2 Allowable Tension Loads in Normal-Weight Concrete:
• Static Load
• Wind Load
Seismic Load14
Stainless Steel Strong-Bolt® 2 Shear Design Strengths in Normal-Weight Concrete
Stainless Steel Strong-Bolt® 2 Allowable Shear Loads in Normal-Weight Concrete:
• Static Load16
• Wind Load16
Seismic Load
Stainless Steel Strong-Bolt [®] 2 Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies
Stainless Steel Strong-Bolt [®] 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies:
• Static Load
• Wind Load
Seismic Load
Mechanically Galvanized Carbon Steel Strong-Bolt® 2 Installation Information and Additional Data
Mechanically Galvanized Carbon Steel Strong-Bolt® 2 Tension & Shear Strength Design Data
Mechanically Galvanized Carbon Steel Strong-Bolt [®] 2 Tension and Shear Design Strengths in Uncracked Normal-Weight Concrete
Mechanically Galvanized Carbon Steel Strong-Bolt [®] 2 Allowable Tension and Shear Loads in Uncracked Normal-Weight Concrete:
• Static Load
• Wind Load

Icons and Nomenclature

In order to facilitate easier identification of performance data, the following icon system has been incorporated into the sections of the technical bulletin with multiple load tables. These icons will appear in the heading of the table to promote easier visual identification of the type of load, insert type and substrate addressed in the table. Icons are intended for quick identification. All specific information regarding suitability should be read from the table itself.

Normal-Weight Concrete

Normal-Weight/ Lightweight Concrete over Metal Deck

Tension Load

Shear Load

Valid for International Building Code

C _{ac}	Critical Edge Distance
C _{min}	Minimum Edge Distance
f' _c	Concrete Compressive Strength
h _{nom}	Nominal Embedment Depth
h _{min}	Minimum Concrete Thickness

IBC

Zinc-Plated Carbon Steel Strong-Bolt® 2 Tension **Design Strengths** in Normal-Weight Concrete ($f_c = 2,500$ psi)

					Tension Design Strength (lb.)							
Anchor Dia.	Nominal Embed.	Min. Concrete Thickness	Critical Edge Distance	Minimum Edge Distance	Edg	e Distances	= c _{ac} on all si	des	Edge	e Distances = and c _{ac} on	= c _{min} on one s three sides	side
(in.)	Depth (in.)	h _{min} (in.)	C _{ac} (in.)	C _{min} (in.)	SDC	A-B	SDC	C-F	SDC A-B		SDC	C-F
		()	()	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1⁄4	1 3⁄4	31⁄4	21⁄2	1 3⁄4	1,435	_		_	1,070	_	—	
3/8	1 7⁄8	31⁄4	61⁄2	6	1,435	845	1,075	635	1,325	845	990	635
78	27⁄8	41⁄2	6	6	2,170	1,805	1,630	1,355	2,170	1,805	1,630	1,355
	21⁄48	4	6	6	1,805		—	_	1,805	_	—	_
1⁄2	23⁄4	4	6	6	2,350	1,865	1,760	1,400	2,350	1,865	1,760	1,400
	37⁄8	6	71⁄2	4	3,415	3,240	2,560	2,430	2,740	2,875	2,055	2,155
	23⁄4 ⁸	51⁄2	71⁄2	61⁄2	2,720	—	—	—	2,355	—	—	
5⁄8	33⁄8	51⁄2	71⁄2	61⁄2	3,555	2,520	2,665	1,890	3,085	2,520	2,310	1,890
	51⁄8	71⁄8	9	61⁄2	5,865	4,480	4,400	3,360	5,420	4,480	4,065	3,360
	33⁄88	6	6	4 1/4	3,730	_	—	_	2,640	_	—	_
3⁄4	4 1⁄8	6	6	4 1⁄4	4,625	3,425	3,470	2,570	3,570	3,000	2,680	2,250
	5¾	8¾	8	41⁄4	5,765	5,525	4,325	4,145	5,570	4,210	4,180	3,155
1	51⁄4	9	18	8	4,600	4,235	3,450	3,175	2,800	4,235	2,100	3,175
	93⁄4	13½	13½	8	5,330	6,150	3,995	4,615	5,330	6,150	3,995	4,615

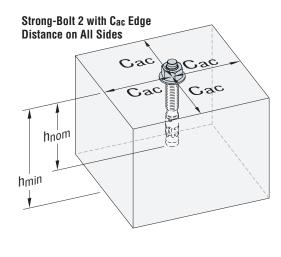
1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-14 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

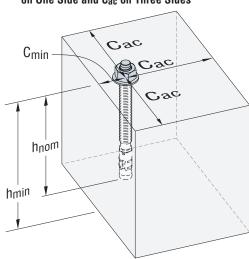
3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-14 Section 5.3.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.


6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.


8. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

9. The Designer of Record is responsible for the foundation design.

Strong-Bolt 2 with $C_{min}\ Edge\ Distance$ on One Side and C_{ac} on Three Sides

Flat Slab

Flat Slab

IBC

Zinc-Plated Carbon Steel Strong-Bolt[®] 2 **Allowable** Tension Loads in Normal-Weight Concrete $(f_c = 2,500 \text{ psi})$ — Static Load

				Minimum Edgo	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)		nces = c _{ac} sides	Edge Distances = and c _{ac} on	= c _{min} on one side three sides			
					Uncracked	Cracked	Uncracked	Cracked			
1/4	1 3⁄4	31⁄4	21⁄2	1¾	1,025	—	765				
3/8	1 7⁄8	31⁄4	6½	6	1,025	605	945	605			
98	21/8	41/2	6	6	1,550	1,290	1,550	1,290			
	21⁄44	4	6	6	1,290	—	1,290	—			
1/2	23⁄4	4	6	6	1,680	1,330	1,680	1,330			
	37⁄8	6	71⁄2	4	2,440	2,315	1,955	2,055			
	23⁄44	51⁄2	71⁄2	61⁄2	1,945	—	1,680	—			
5⁄8	33⁄8	51⁄2	71⁄2	61⁄2	2,540	1,800	2,205	1,800			
	51/8	71/8	9	61⁄2	4,190	3,200	3,870	3,200			
	33⁄84	6	6	41⁄4	2,665	—	1,885	—			
3⁄4	41⁄8	6	6	41⁄4	3,305	2,445	2,550	2,140			
	53⁄4	83⁄4	8	41⁄4	4,120	3,945	3,980	3,005			
1	51⁄4	9	18	8	3,285	3,025	2,000	3,025			
	93⁄4	13½	131⁄2	8	3,805	4,395	3,805	4,395			

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

Tabulated values are for a single anchor with no influence of another anchor.
 Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

5. The Designer of Record is responsible for the foundation design.

Zinc-Plated Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Wind Load

					Allowable Tension Load (lb.)							
nchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Dista on all		Edge Distances = c_{min} on side and c_{ac} on three side					
					Uncracked	Cracked	Uncracked	Cracked				
1⁄4	1¾	31⁄4	21⁄2	13⁄4	860	—	640	_				
2/	1 7/8	31⁄4	61⁄2	6	860	505	795	505				
3⁄8	27⁄8	41⁄2	6	6	1,300	1,085	1,300	1,085				
	21⁄44	4	6	6	1,085	_	1,085	_				
1/2	23⁄4	4	6	6	1,410	1,120	1,410	1,120				
	37⁄8	6	71⁄2	4	2,050	1,945	1,645	1,725				
	23⁄44	51/2	71⁄2	61⁄2	1,630		1,415	_				
5⁄8	33%8	51/2	71⁄2	61⁄2	2,135	1,510	1,850	1,510				
	51/8	71/8	9	61⁄2	3,520	2,690	3,250	2,690				
	33⁄84	6	6	41⁄4	2,240		1,585	_				
3⁄4	41⁄8	6	6	41⁄4	2,775	2,055	2,140	1,800				
	53⁄4	8¾	8	41⁄4	3,460	3,315	3,340	2,525				
4	51⁄4	9	18	8	2,760	2,540	1,680	2,540				
I	93⁄4	131⁄2	131⁄2	8	3,200	3,690	3,200	3,690				

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

5. The Designer of Record is responsible for the foundation design.

IBC

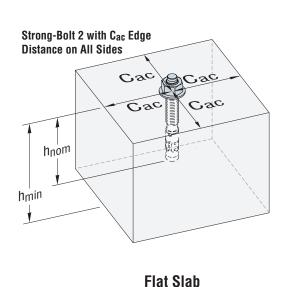
Zinc-Plated Carbon Steel Strong-Bolt[®] 2 **Allowable** Tension Loads in Normal-Weight Concrete ($f_c = 2,500 \text{ psi}$) — Seismic Load

							All	lowable Ten	sion Load (II) .)		
Anchor Dia.	Nominal Embed. Depth	Min. Concrete Thickness	Critical Edge Distance c _{ac}	Minimum Edge Distance c _{min}	Edge	Distances	= c _{ac} on all s	sides	$\begin{array}{c} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$			
(in.)	(in.)	h _{min} (in.)	(in.)	(in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC	C-F
					Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1⁄4	1 3⁄4	31⁄4	21⁄2	1¾	1,005	_		_	750	_]	
3/8	1 7⁄8	31⁄4	61⁄2	6	1,005	590	755	445	930	590	695	445
98	21⁄8	41⁄2	6	6	1,520	1,265	1,140	950	1,520	1,265	1,140	950
	21⁄47	4	6	6	1,265	_	—	_	1,265	_	—	_
1/2	23⁄4	4	6	6	1,645	1,305	1,230	980	1,645	1,305	1,230	980
	31⁄8	6	71⁄2	4	2,390	2,270	1,790	1,700	1,920	2,010	1,440	1,510
	23⁄47	51⁄2	71⁄2	61⁄2	1,905	_	—	_	1,650	_	—	—
5⁄8	33⁄8	51⁄2	71⁄2	61⁄2	2,490	1,765	1,865	1,325	2,160	1,765	1,615	1,325
	51⁄8	71⁄8	9	61⁄2	4,105	3,135	3,080	2,350	3,795	3,135	2,845	2,350
	33⁄87	6	6	41⁄4	2,610	—	—	—	1,850	—	—	—
3⁄4	41⁄8	6	6	41⁄4	3,240	2,400	2,430	1,800	2,500	2,100	1,875	1,575
	5¾	83⁄4	8	41⁄4	4,035	3,870	3,030	2,900	3,900	2,945	2,925	2,210
1	51⁄4	9	18	8	3,220	2,965	2,415	2,225	1,960	2,965	1,470	2,225
	93⁄4	13½	13½	8	3,730	4,305	2,795	3,230	3,730	4,305	2,795	3,230

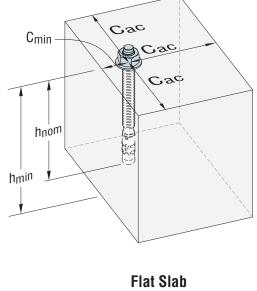
1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{20.7} = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.


4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.


6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

7. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

8. The Designer of Record is responsible for the foundation design.

Strong-Bolt 2 with C_{min} Edge Distance on One Side and C_{ac} on Three Sides

IBC

Zinc-Plated Carbon Steel Strong-Bolt[®] 2 Shear **Design Strengths** in Normal-Weight Concrete ($f'_c = 2,500 \text{ psi}$)

									Shea	r Design S	Strength (lb.)				
	Nominal	Min.	Critical	Minimum	Edge Di	Edge Distances = c_{ac} on all sides Edge Distances = c_{min} on one side and c		c _{ac} on three sides								
Anchor Dia.	Embed.	Concrete Thickness	Edge Distance	Edge Distance	SDC A	A-B	SDC	C-F	SDC A-B				SDC C-F			
(in.)	Depth (in.)	h _{min} (in.)	C _{ac} (in.)	C _{min} (in.)					Uncra	acked	Cracked		Uncracked		Cracked	
		()	()	()	Uncracked C	Cracked l	Uncracked	Cracked	⊥ to edge	ll to edge						
1⁄4	1¾	31⁄4	21⁄2	1 3⁄4	560	—	—	—	535	440			—	—	—	—
3/8	1 7⁄8	31⁄4	61⁄2	6	1,170	1,095	1,170	1,095	1,170	1,170	1,095	1,095	1,170	1,170	1,095	1,095
78	27⁄8	41⁄2	6	6	1,170	1,170	1,170	1,170	1,170	1,170	1,170	1,170	1,170	1,170	1,170	1,170
	21⁄48	4	6	6	1,935	—	_	—	1,935	1,935			—	—	_	_
1⁄2	23⁄4	4	6	6	2,140	1,530	2,140	1,530	2,140	2,140	1,530	1,530	2,140	2,140	1,530	1,530
	37⁄8	6	71⁄2	4	3,555	2,540	3,555	2,540	2,845	2,345	2,030	1,675	2,845	2,345	2,030	1,675
	23⁄4 ⁸	5½	71⁄2	61⁄2	1,935	_	—	—	1,935	1,935	—	—	—	—	_	—
5⁄8	33⁄8	5½	71⁄2	61⁄2	3,490	2,495	3,490	2,495	3,490	3,130	2,495	2,235	3,490	3,130	2,495	2,235
	51⁄8	71⁄8	9	61⁄2	5,535	3,955	5,535	3,955	5,535	4,370	3,955	3,120	5,535	4,370	3,955	3,120
	33⁄88	6	6	4 1/4	3,055	_	—	—	3,055	2,380	_			—	—	—
3⁄4	41⁄8	6	6	4 1⁄4	3,210	2,295	3,210	2,295	3,210	2,500	2,295	1,785	3,210	2,500	2,295	1,785
	5¾	8¾	8	4 1⁄4	5,450	3,890	5,450	3,890	3,805	3,620	2,715	2,585	3,805	3,620	2,715	2,585
1	51⁄4	9	18	8	9,010	9,010	9,010	9,010	7,130	7,130	6,175	5,575	7,130	7,130	6,175	5,575
	93⁄4	13½	13½	8	9,010	8,505	9,010	8,505	9,010	8,325	7,130	5,945	9,010	8,325	7,130	5,945

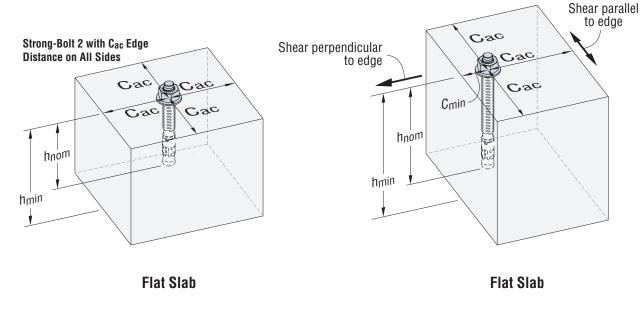
1. Shear design strengths (SD level) are based on the strength design provisions of ACI 318-14 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, φ, is based on using a load combination from ACI 318-14 Section 5.3.

5. The shear design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the shear component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored shear load on the anchor associated with the same load combination.


6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

7. Shear design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

8. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

9. The Designer of Record is responsible for the foundation design.

Strong-Bolt 2 with C_{min} Edge Distance on One Side and C_{ac} on Three Sides

IBC

Zinc-Plated Carbon Steel Strong-Bolt[®] 2 **Allowable** Shear Loads in Normal-Weight Concrete $(f_c = 2,500 \text{ psi})$ — Static Load

					Allowable Shear Load (lb.)									
Anchor Dia.	Nominal Embed. Depth	Min. Concrete Thickness	Critical Edge Distance c _{ac}	Minimum Edge Distance c _{min}	Edge Distanc sic	es = c _{ac} on all les	Edge Distances = c_{min} on one side and c_{ac} on three sides							
(in.)	(in.)	h _{min} (in.)	(in.)	(in.)	lles and start	Over a live al	Uncra	acked	Cracked					
					Uncracked	Cracked	⊥ to edge	ll to edge	⊥ to edge	ll to edge				
1⁄4	1 3⁄4	31⁄4	21⁄2	1 3⁄4	400		380	315		_				
3/8	1 7⁄8	31⁄4	61⁄2	6	835	780	835	835	780	780				
9/8	21⁄8	41⁄2	6	6	835	835	835	835	835	835				
	21⁄4 ⁴	4	6	6	1,380		1,380	1,380						
1/2	23⁄4	4	6	6	1,530	1,095	1,530	1,530	1,095	1,095				
	31⁄8	6	71⁄2	4	2,540	1,815	2,030	1,675	1,450	1,195				
	23⁄44	51⁄2	71⁄2	61⁄2	1,380	—	1,380	1,380	—	—				
5⁄8	3%	51⁄2	71⁄2	61⁄2	2,495	1,780	2,495	2,235	1,780	1,595				
	51⁄8	71⁄8	9	61⁄2	3,955	2,825	3,955	3,120	2,825	2,230				
	3¾4	6	6	41⁄4	2,180	—	2,180	1,700	—	—				
3⁄4	41⁄8	6	6	41⁄4	2,295	1,640	2,295	1,785	1,640	1,275				
	5¾	83⁄4	8	41⁄4	3,895	2,780	2,720	2,585	1,940	1,845				
-1	51⁄4	9	18	8	6,435	6,435	5,095	5,095	4,410	3,980				
	9¾	13½	13½	8	6,435	6,075	6,435	5,945	5,095	4,245				

1. Allowable shear loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no influence of another anchor.

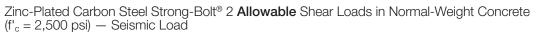
3. Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

5. The Designer of Record is responsible for the foundation design.

Zinc-Plated Carbon Steel Strong-Bolt[®] 2 **Allowable** Shear Loads in Normal-Weight Concrete ($f'_c = 2,500 \text{ psi}$) — Wind Load

							Allowable Sh	ear Load (lb.)				
Anchor Dia.	Embed.	Min. Concrete Thickness	Critical Edge Distance c _{ac}	Minimum Edge Distance c _{min}	Edge Distanc sic	es = c _{ac} on all les	Edge Distances = c_{min} on one side and c_{ac} on three sides					
(in.)	Depth (in.)	h _{min} (in.)	(in.)	(in.)	lle our also d	Oversland	Uncra	acked	Cracked			
					Uncracked	Cracked	\perp to edge	ll to edge	\perp to edge	ll to edge		
1⁄4	13⁄4	31⁄4	21⁄2	1 3⁄4	335	—	320	265				
3/8	1 7⁄8	31⁄4	61⁄2	6	700	655	700	700	655	655		
9/8	21⁄8	41⁄2	6	6	700	700	700	700	700	700		
_	21⁄44	4	6	6	1,160		1,160	1,160		_		
1⁄2	23⁄4	4	6	6	1,285	920	1,285	1,285	920	920		
	31⁄8	6	71⁄2	4	2,135	1,525	1,705	1,405	1,220	1,005		
	23⁄44	51⁄2	71⁄2	61⁄2	1,160		1,160	1,160	—	—		
5⁄8	33⁄8	51⁄2	71⁄2	61⁄2	2,095	1,495	2,095	1,880	1,495	1,340		
	51⁄8	71⁄8	9	61⁄2	3,320	2,375	3,320	2,620	2,375	1,870		
	3¾4	6	6	4 1⁄4	1,835	—	1,835	1,430	—	_		
3⁄4	41⁄8	6	6	4 1⁄4	1,925	1,375	1,925	1,500	1,375	1,070		
	5¾	8¾	8	41⁄4	3,270	2,335	2,285	2,170	1,630	1,550		
1	51⁄4	9	18	8	5,405	5,405	4,280	4,280	3,705	3,345		
	93⁄4	13½	13½	8	5,405	5,105	5,405	4,995	4,280	3,565		


1. Allowable shear loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{6.6} = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

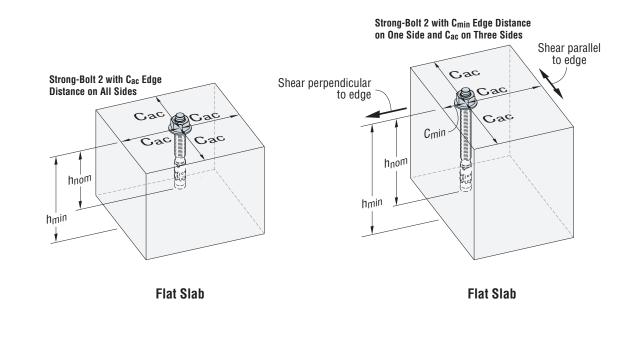
5. The Designer of Record is responsible for the foundation design.

									Allowat	ole Shear	Load (lb.)				
	Nominal	Min.		Minimum	Edge	Distances	= c _{ac} on all	sides	Edge Distances = c_{min} on one side and c_{ac} on three sides							
Anchor Dia.	Embed.	Concrete Thickness	Edge Distance	Edge Distance	SDC	A-B	SDC	C-F	-F SDC		A-B			SDC C-F		
(in.)	Depth (in.)	h _{min} (in.)	c _{ac} (in.)	C _{min} (in.)					Uncra	acked	Cracked		Uncracked		Cracked	
		()	(,	(,	Uncracked	Cracked	Uncracked	Cracked	⊥ to edge	ll to edge	\perp to edge	ll to edge	⊥ to edge	ll to edge	⊥ to edge	ll to edge
1⁄4	1¾	31⁄4	21⁄2	13⁄4	390	—	—	—	375	310	—	—		—		—
3/8	1 7⁄8	31⁄4	61⁄2	6	820	765	820	765	820	820	765	765	820	820	765	765
78	27⁄8	4 1⁄2	6	6	820	820	820	820	820	820	820	820	820	820	820	820
	21⁄47	4	6	6	1,355	—	—	—	1,355	1,355	—	_	_	—	—	—
1⁄2	23⁄4	4	6	6	1,500	1,070	1,500	1,070	1,500	1,500	1,070	1,070	1,500	1,500	1,070	1,070
	31⁄8	6	71⁄2	4	2,490	1,780	2,490	1,780	1,990	1,640	1,420	1,175	1,990	1,640	1,420	1,175
	23⁄47	5½	71⁄2	6½	1,355	_	—	_	1,355	1,355	—	_	—	—	—	—
5⁄8	33⁄8	51⁄2	71⁄2	6½	2,445	1,745	2,445	1,745	2,445	2,190	1,745	1,565	2,445	2,190	1,745	1,565
	51⁄8	71⁄8	9	6½	3,875	2,770	3,875	2,770	3,875	3,060	2,770	2,185	3,875	3,060	2,770	2,185
	33⁄87	6	6	4 1⁄4	2,140	_	—	_	2,140	1,665	_		_		—	_
3⁄4	41⁄8	6	6	41⁄4	2,245	1,605	2,245	1,605	2,245	1,750	1,605	1,250	2,245	1,750	1,605	1,250
	5¾	8¾	8	41⁄4	3,815	2,725	3,815	2,725	2,665	2,535	1,900	1,810	2,665	2,535	1,900	1,810
1	51⁄4	9	18	8	6,305	6,305	6,305	6,305	4,990	4,990	4,325	3,900	4,990	4,990	4,325	3,900
	9¾	13½	13½	8	6,305	5,955	6,305	5,955	6,305	5,830	4,990	4,160	6,305	5,830	4,990	4,160

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{20.7} = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.


4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

7. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

8. The Designer of Record is responsible for the foundation design.

* See page 3 for an explanation of the load table icons.

SIMPSON

Strong

IBC

IBC

Zinc-Plated Carbon Steel Strong-Bolt[®] 2 Tension **Design Strengths** in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$)

					Tension Design Strength (lb.)							
Anchor	Nominal Embed. Depth (in.)	Mimimum End										
Dia. (in.)		Distance c _{min} (in.)	SDC	SDC A-B SDC C-F SDC A-B SDC C-F				C-F				
	()		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
3/8	2	31⁄4	1,145	675	860	505	1,480	870	1,110	655		
78	3%	6	2,050	1,700	1,535	1,275	—	—	—	—		
1/2	23⁄4	41⁄2	1,675	1,325	1,260	995	3,115	2,460	2,340	1,845		
72	41⁄2	8	2,495	1,775	1,870	1,330	—	—	—	—		
5/8	3%	51⁄2	2,395	1,700	1,795	1,275	—	—	—	—		
98	5%	10	4,265	3,245	3,200	2,435	—	—	—	—		
3⁄4	41⁄8	6¾	2,470	1,830	1,855	1,370	—	—	—	—		

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-14 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-14 Section 5.3.

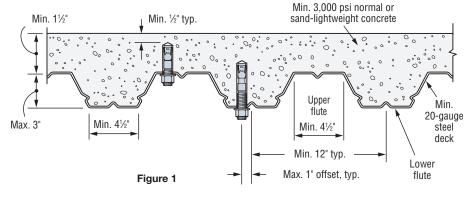
5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strengthlevel seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

8. Installation must comply with Figure 1.

Zinc-Plated Carbon Steel Strong-Bolt[®] 2 **Allowable** Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f_c = 3,000 \text{ psi}$) — Static Load


	Nominal	Minimum End		Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Embed. Depth	Distance c _{min}	Lowe	r Flute	Uppei	^r Flute
, , , , , , , , , , , , , , , , , , ,	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked
3%8	2	31⁄4	820	480	1,055	620
78	33⁄8	6	1,465	1,215	—	—
1/	23⁄4	41⁄2	1,195	945	2,225	1,755
1/2	41⁄2	8	1,780	1,270	—	—
5/8	33⁄8	51⁄2	1,710	1,215	—	—
¥8	5%	10	3,045	2,320	—	_
3⁄4	41⁄8	6¾	1,765	1,305	—	—

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = 1.4$. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 1.

IBC

Zinc-Plated Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3,000 psi) - Wind Load

Anchor	Nominal Embed.	Minimum End		Allowable Ten	sion Load (lb.)	
Dia.	Depth	Distance c _{min}	Lowe	r Flute	Upper	Flute
(in.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked
3/8	2	31⁄4	685	405	890	520
98	3%	6	1,230	1,020	—	—
1/	2¾	41⁄2	1,005	795	1,870	1,475
1/2	41⁄2	8	1,495	1,065	—	—
5/8	33⁄8	51⁄2	1,435	1,020	—	—
78	5%	10	2,560	1,945	—	—
3⁄4	41⁄8	6¾	1,480	1,100	—	—

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{30.6} = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 1.

Zinc-Plated Carbon Steel Strong-Bolt® 2 Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f' = 3,000 psi)

	t
--	----------

- Seismic Load

		Minimum			ŀ	Allowable Ten	sion Load (lb.)				
Anchor	Nominal Embed.	Minimum End Distance		Lowe	r Flute			Upper	Flute		
Dia. (in.)	Depth (in.)	C _{min} (in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC C-F		
	(,		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
3/8	2	31⁄4	800	475	600	355	1,035	610	775	460	
98	33⁄8	6	1,435	1,190	1,075	895	_	—	—	—	
1/2	23⁄4	41/2	1,175	930	880	695	2,180	1,720	1,640	1,290	
72	41/2	8	1,745	1,245	1,310	930		—	—	—	
5/8	33⁄8	51⁄2	1,675	1,190	1,255	895	_	—	—	—	
98	5%	10	2,985	2,270	2,240	1,705	_	—	—	—	
3⁄4	41⁄8	6¾	1,730	1,280	1,300	960	_	_	_	—	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{2}$. The conversion factor $\boldsymbol{\alpha}$ is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

7. Installation must comply with Figure 1.

IBC

Stainless Steel Strong-Bolt® 2 Tension Design Strengths in Normal-Weight Concrete $(f'_c = 2,500 \text{ psi})$

							٦	Tension Des	ign Strength	(lb.)		
Dia.	Nominal Embed. Depth	Min. Concrete Thickness	Critical Edge Distance c _{ac}	Minimum Edge Distance	Edge	Distances	= c _{ac} on all s	ides	Edge		= c _{min} on one s three sides	side
(in.)	(in.)	h _{min} (in.)	(in.)	c _{min} (in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC	C-F
					Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1⁄4	13⁄4	31⁄4	21⁄2	1 3⁄4	1,250	_	—		1,070	_	—	_
3/8	1 7⁄8	31⁄4	6½	6	1,435	1,015	1,075	760	1,325	1,015	990	760
78	21⁄8	41⁄2	81⁄2	6	3,085	2,045	2,090	1,380	2,175	2,045	1,630	1,380
	21⁄48	41⁄2	61⁄2	61⁄2	1,415	_	—		1,415	—	—	_
1⁄2	23⁄4	41⁄2	61⁄2	61⁄2	2,100	1,665	1,575	1,250	2,100	1,665	1,575	1,250
	31⁄8	6	7	5	2,920	2,800	2,190	2,100	2,920	2,800	2,190	2,100
	23⁄4 ⁸	51⁄2	71⁄2	4	1,545	—	_	—	1,290	—	—	—
5⁄8	33⁄8	51⁄2	71⁄2	4	3,555	2,520	2,665	1,890	1,910	2,640	1,430	1,845
	51⁄8	71⁄8	9	4	4,950	4,255	3,710	3,190	3,905	3,685	2,925	2,765
	3¾ ⁸	6¾	8	6	3,315	_	—	_	2,485	_	—	_
3⁄4	41⁄8	6¾	8	6	4,835	3,425	3,625	2,570	3,625	3,425	2,720	2,570
	5¾	8¾	8	6	6,255	5,350	4,690	4,010	6,255	5,225	4,690	3,920

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-14 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

Cac

Gac

Flat Slab

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-14 Section 5.3.

5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

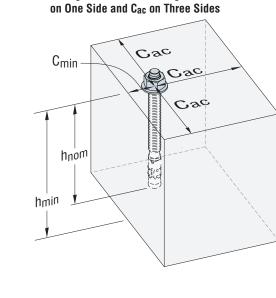
6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

8. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

Cac

Cac


9. The Designer of Record is responsible for the foundation design.

Strong-Bolt 2 with Cac Edge

Distance on All Sides

hnom

hmin

Strong-Bolt 2 with Cmin Edge Distance

Flat Slab

Stainless Ste – Static Lo	eel Strong-Bo ad	lt [®] 2 Allowab	le Tension Lo	oads in Norm	al-Weight Co	ncrete (f' _c = 2	2,500 psi) IB	C 🚺 💽 *
						Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Distances	= c _{ac} on all sides		= c _{min} on one side three sides
					Uncracked	Cracked	Uncracked	Cracked
1⁄4	1¾	31⁄4	21⁄2	1 3⁄4	895	—	765	—
3/8	1 7/8	31⁄4	61⁄2	6	1,025	725	945	725
98	27/8	41⁄2	81⁄2	6	2,205	1,460	1,555	1,460
	21⁄44	41⁄2	61⁄2	61⁄2	1,010	—	1,010	—
1/2	23⁄4	41⁄2	61⁄2	61⁄2	1,500	1,190	1,500	1,190
	37⁄8	6	7	5	2,085	2,000	2,085	2,000
	23⁄44	51⁄2	71⁄2	4	1,105	—	920	—
5⁄8	33/8	51⁄2	71⁄2	4	2,540	1,800	1,365	1,755
	51/8	71⁄8	9	4	3,535	3,040	2,790	2,630
	33⁄84	6¾	8	6	2,370	_	1,775	_
3⁄4	41/8	63⁄4	8	6	3,455	2,445	2,590	2,445

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

6

4,470

3,820

4.470

3,730

2. Tabulated values are for a single anchor with no influence of another anchor.

8¾

3. Interpolation between embedment depths is not permitted.

5¾

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

8

5. The Designer of Record is responsible for the foundation design.

Stainless Steel Strong-Bolt[®] 2 Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Wind Load

						Allowable Ten	sion Load (lb.)	
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)		nces = c _{ac} sides	Edge Distances = and c _{ac} on	= c _{min} on one side three sides
			(,	(,	Uncracked	Cracked	Uncracked	Cracked
1⁄4	1 3⁄4	31⁄4	21⁄2	1 3⁄4	750		640	
2/	1 7⁄8	31⁄4	6½	6	860	610	795	610
3/8	27⁄8	41/2	81⁄2	6	1,850	1,225	1,305	1,225
	21⁄44	41/2	61⁄2	61⁄2	850		850	
1/2	2¾	41/2	6½	61⁄2	1,260	1,000	1,260	1,000
	37⁄8	6	7	5	1,750	1,680	1,750	1,680
	23⁄44	51⁄2	7 1/2	4	925		775	
5⁄8	3%	51⁄2	7 1/2	4	2,135	1,510	1,145	1,475
	51/8	7 1/8	9	4	2,970	2,555	2,345	2,210
	33⁄84	6¾	8	6	1,990	_	1,490	_
3⁄4	41⁄8	6¾	8	6	2,900	2,055	2,175	2,055
	5¾	8¾	8	6	3,755	3,210	3,755	3,135

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \%_{.6} = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

5. The Designer of Record is responsible for the foundation design.

							ļ	Allowable Ter	nsion Load (lb.)			
Anchor Dia.	Nominal Embed.	Min. Concrete Thickness	Critical Edge Distance	Minimum Edge Distance	Edç	e Distances	= c _{ac} on all sid	les	Edg	e Distances = and c _{ac} on	= c _{min} on one si three sides	ide
(in.)	Depth (in.)	h _{min} (in.)	c _{ac} (in.)	C _{min} (in.)	SDC	A-B	SDC	C-F	SDC	A-B	SDC	C-F
		(,	()	()	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked
1⁄4	13⁄4	3¼	2½	13⁄4	875	_	—	—	750	_	—	—
3/8	1 7⁄8	31⁄4	6½	6	1,005	710	755	530	930	710	695	530
98	27⁄8	4 1/2	81⁄2	6	2,160	1,430	1,465	965	1,525	1,430	1,140	965
	21⁄47	4 1/2	6½	6½	990	—	—	_	990		—	—
1⁄2	23⁄4	4 1/2	6½	6½	1,470	1,165	1,105	875	1,470	1,165	1,105	875
	37⁄8	6	7	5	2,045	1,960	1,535	1,470	2,045	1,960	1,535	1,470
	23⁄4 ⁷	51⁄2	71⁄2	4	1,080	_	—	_	905		—	—
5⁄8	33⁄8	5½	71⁄2	4	2,490	1,765	1,865	1,325	1,335	1,720	1,000	1,290
	51⁄8	71⁄8	9	4	3,465	2,980	2,595	2,235	2,735	2,580	2,050	1,935
	33⁄87	6¾	8	6	2,320	_	_	_	1,740	_	_	
3⁄4	41⁄8	6¾	8	6	3,385	2,400	2,540	1,800	2,540	2,400	1,905	1,800
	5¾	8¾	8	6	4,380	3,745	3,285	2,805	4,380	3,660	3,285	2,745

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{20.7} = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

Cac

Cac

Flat Slab

3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

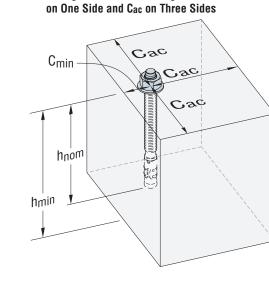
5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

7. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

Cac

Cac


8. The Designer of Record is responsible for the foundation design.

Strong-Bolt 2 with Cac Edge

Distance on All Sides

hnom

hmin

Strong-Bolt 2 with Cmin Edge Distance

Flat Slab

* See page 3 for an explanation of the load table icons.

© 2024 Simpson Strong-Tie Company Inc. TEB-A-STB2-24

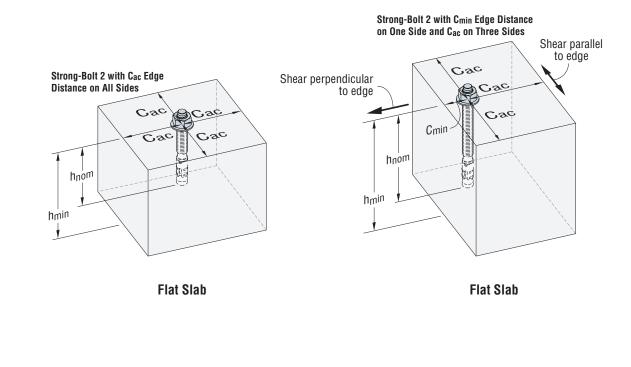
									Shear D	esign Str	ength (lb	.)				
	Nominal	Min.	Critical	Minimum	Edge	Distances	= c _{ac} on all	sides		Edge Dist	tances = (c _{min} on on	e side and	d c _{ac} on th	ree sides	
	Embed. Concrete Edge Edge Denth Thickness Distance Distance		Edge Distance	SDC	SDC A-B SDC C-F				SDC	A-B			SDC	C-F		
(in.)	Uepth (in.)	h _{min} (in.)	C _{ac} (in.)	C _{min} (in.)					Uncra	Uncracked Cracked			Uncra	acked	Crac	cked
		()	()	()	Uncracked	Cracked	Uncracked	Cracked	⊥ to edge	ll to edge	⊥ to edge	ll to edge	⊥ to edge	ll to edge	⊥ to edge	ll to edge
1⁄4	1¾	3¼	21⁄2	1 3⁄4	560	—	—	—	535	440	—	—		—	—	—
3/8	1 7⁄8	31⁄4	6½	6	1,545	1,095	1,545	1,095	1,425	1,425	1,095	1,095	1,425	1,425	1,095	1,095
98	27⁄8	41⁄2	81⁄2	6	2,005	2,005	2,005	2,005	2,005	2,005	2,005	1,675	2,005	2,005	2,005	1,675
	21⁄48	41⁄2	61⁄2	6½	1,945	—	—	—	1,945	1,945	—	—	—	—	_	—
1⁄2	23⁄4	41⁄2	6½	6½	2,460	1,755	2,460	1,755	2,460	2,460	1,755	1,755	2,460	2,460	1,755	1,755
	31⁄8	6	7	5	3,315	2,370	3,315	2,370	3,315	2,600	2,370	1,855	3,315	2,600	2,370	1,855
	2¾ ⁸	51⁄2	71⁄2	4	2,600	—	—	—	1,390	1,390	—	—	—	—	—	—
5⁄8	33⁄8	5½	71⁄2	4	3,490	2,495	3,490	2,495	2,795	2,300	1,995	1,645	2,795	2,300	1,995	1,645
	51⁄8	71⁄8	9	4	5,535	3,955	5,535	3,955	3,220	3,330	2,300	2,380	3,220	3,330	2,300	2,380
	33⁄88	6¾	8	6	4,320	_	_	—	4,320	3,495	_	_	_	_	_	
3⁄4	41⁄8	6¾	8	6	4,540	3,245	4,540	3,245	4,540	3,675	3,245	2,625	4,540	3,675	3,245	2,625
	5¾	8¾	8	6	5,450	3,890	5,450	3,890	5,450	4,430	3,890	3,165	5,450	4,430	3,890	3,165

1. Shear design strengths (SD level) are based on the strength design provisions of ACI 318-14 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ψ, is based on using a load combination from ACI 318-14 Section 5.3.


5. The shear design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the shear component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored shear load on the anchor associated with the same load combination.

When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

7. Shear design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

8. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

9. The Designer of Record is responsible for the foundation design.

	ess Ste atic Loa		Bolt® 2 Alic	owable Shea	ir Loads in i	Normal-vve	ignt Concre	te (f. _c = 2,5	OU PSI) IBC	
							Allowable Sh	ear Load (lb.)		
Anchor Dia.	Embed.	Min. Concrete Thickness	Critical Edge Distance c _{ac}	Minimum Edge Distance c _{min}	Edge Distan all s	ces = c _{ac} on ides	E	dge Distances = and c _{ac} on	= c _{min} on one sid three sides	e
(in.)	Depth (in.)	h _{min} (in.)	(in.)	(in.)	Uneverted	Overland	Uncra	acked	Crac	cked
					Uncracked	Cracked	\perp to edge	ll to edge	\perp to edge	ll to edge
1⁄4	1¾	31⁄4	21⁄2	1 3⁄4	400	—	380	315	—	—
3/8	1 7⁄8	31⁄4	61⁄2	6	1,105	780	1,020	1,020	780	780
9⁄8	21⁄8	41/2	81⁄2	6	1,430	1,430	1,430	1,430	1,430	1,195
	21⁄44	41⁄2	61⁄2	61⁄2	1,390		1,390	1,390		_
1⁄2	23⁄4	41⁄2	6½	61⁄2	1,755	1,255	1,755	1,755	1,255	1,255
	31⁄8	6	7	5	2,370	1,695	2,370	1,855	1,695	1,325
	23⁄44	51⁄2	71⁄2	4	1,855	—	995	995	—	_
5⁄8	3%	51⁄2	71⁄2	4	2,495	1,780	1,995	1,645	1,425	1,175
	51⁄8	71⁄8	9	4	3,955	2,825	2,300	2,380	1,645	1,700
	3¾4	6¾	8	6	3,085		3,085	2,495	—	_
3⁄4	41⁄8	6¾	8	6	3,245	2,320	3,245	2,625	2,320	1,875
	5¾	83⁄4	8	6	3,895	2,780	3,895	3,165	2,780	2,260

1. Allowable shear loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

5. The Designer of Record is responsible for the foundation design.

Stainless Steel Strong-Bolt[®] 2 **Allowable** Shear Loads in Normal-Weight Concrete (f'_c = 2,500 psi) **IBC** Wind Load

							Allowable Sh	ear Load (lb.)		
Anchor Dia.	Nominal Embed. Depth	Min. Concrete Thickness	Critical Edge Distance c _{ac}	Minimum Edge Distance c _{min}	Edge Distan all s	ces = c _{ac} on ides	E		= c _{min} on one sid three sides	е
(in.)	(in.)	h _{min} (in.)	(in.)	(in.)	llneveelved	Overland	Uncra	acked	Crac	ked
					Uncracked	Cracked	\perp to edge	ll to edge	\perp to edge	ll to edge
1⁄4	13⁄4	31⁄4	21⁄2	1¾	335	_	320	265	—	
3/8	1 7⁄8	31⁄4	61⁄2	6	925	655	855	855	655	655
9/8	27⁄8	41⁄2	81⁄2	6	1,205	1,205	1,205	1,205	1,205	1,005
	21⁄44	41⁄2	61⁄2	61⁄2	1,165	—	1,165	1,165	—	—
1/2	23⁄4	41⁄2	61⁄2	61⁄2	1,475	1,055	1,475	1,475	1,055	1,055
	31⁄8	6	7	5	1,990	1,420	1,990	1,560	1,420	1,115
	23⁄44	51⁄2	71⁄2	4	1,560	—	835	835	—	—
5⁄8	33⁄8	51⁄2	71⁄2	4	2,095	1,495	1,675	1,380	1,195	985
	51⁄8	71⁄8	9	4	3,320	2,375	1,930	2,000	1,380	1,430
	33⁄84	6¾	8	6	2,590		2,590	2,095	—	_
3⁄4	41⁄8	6¾	8	6	2,725	1,945	2,725	2,205	1,945	1,575
	5¾	8¾	8	6	3,270	2,335	3,270	2,660	2,335	1,900

1. Allowable shear loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

5. The Designer of Record is responsible for the foundation design.

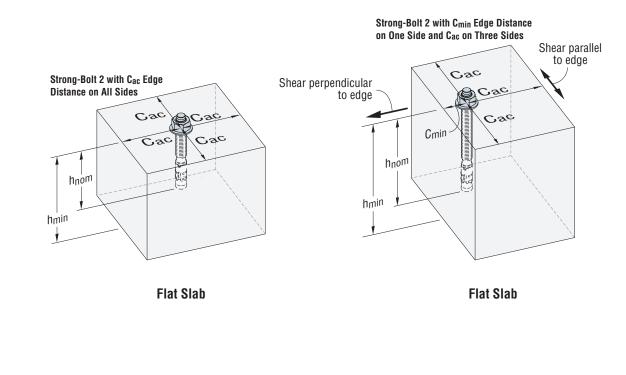
IBC

Stainless Steel Strong-Bolt[®] 2 **Allowable** Shear Loads in Normal-Weight Concrete (f' $_{\rm c}$ = 2,500 psi) — Seismic Load

									Allowal	ole Shear	Load (lb.)				
	Nominal	Min.	Critical	Minimum	Edge	Distances	= c _{ac} on all	sides		Edge Dist	tances = (c _{min} on on	e side and	d c _{ac} on th	ree sides	
Anchor Dia.		Min. Concrete Thickness	Edge Distance	Edge Distance	SDC	A-B	SDC	C-F		SDC	A-B			SDC	C-F	
(in.)	Depth (in.)	h _{min} (in.)	c _{ac} (in.)	c _{min} (in.)					Uncra	acked	Crac	ked	Uncra	acked	d Cracked	
		()	()	()	Uncracked	Cracked	Uncracked	Cracked	⊥ to edge	ll to edge	⊥ to edge	ll to edge	⊥ to edge	ll to edge	⊥ to edge	ll to edge
1⁄4	1¾	31⁄4	21⁄2	1¾	390	_		_	375	310	_		—			_
3/8	1 7⁄8	31⁄4	6½	6	1,080	765	1,080	765	995	995	765	765	995	995	765	765
9/8	27⁄8	41⁄2	81⁄2	6	1,405	1,405	1,405	1,405	1,405	1,405	1,405	1,175	1,405	1,405	1,405	1,175
	21⁄47	41⁄2	6½	6½	1,360	_	—	_	1,360	1,360	—	_	—	_	_	—
1⁄2	23⁄4	41⁄2	6½	6½	1,720	1,230	1,720	1,230	1,720	1,720	1,230	1,230	1,720	1,720	1,230	1,230
	37⁄8	6	7	5	2,320	1,660	2,320	1,660	2,320	1,820	1,660	1,300	2,320	1,820	1,660	1,300
	23⁄47	51⁄2	71⁄2	4	1,820	_	—	—	975	975	—		—	—	—	—
5⁄8	33⁄8	51⁄2	71⁄2	4	2,445	1,745	2,445	1,745	1,955	1,610	1,395	1,150	1,955	1,610	1,395	1,150
	51⁄8	71⁄8	9	4	3,875	2,770	3,875	2,770	2,255	2,330	1,610	1,665	2,255	2,330	1,610	1,665
	3¾7	6¾	8	6	3,025	_	—	—	3,025	2,445		_	_			—
3⁄4	41⁄8	6¾	8	6	3,180	2,270	3,180	2,270	3,180	2,575	2,270	1,835	3,180	2,575	2,270	1,835
	53⁄4	83⁄4	8	6	3,815	2,725	3,815	2,725	3,815	3,100	2,725	2,215	3,815	3,100	2,725	2,215

Allowable shear loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of α = ½,7 = 1.43. The conversion factor α is based on the load combination assuming 100% seismic load.
 Tabulated values are for a single anchor with no influence of another anchor.

Interpolation between embedment depths is not permitted.


 The allowable shear load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the shear component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored shear load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

6. Shear design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

7. Tabulated values for this embedment depth are based on internal testing and they are not listed in ICC-ES ESR-3037.

8. The Designer of Record is responsible for the foundation design.

IBC

IBC

Stainless Steel Strong-Bolt[®] 2 Tension **Design Strengths** in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f^r_c = 3,000 psi)

	Nonimal Embed.		Tension Design Strength (lb.)										
Anchor		Minimum End		Lowe	r Flute		Upper Flute						
Dia. (in.)	Depth (in.)	Distance c _{min} (in.)	SDC A-B		SDC C-F		SDC A-B		SDC C-F				
			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
3/8	2	31⁄4	1,025	800	770	600	1,295	1,010	970	755			
98	3%	6	2,570	1,695	1,735	1,145	—	—	—	—			
1/2	23⁄4	41/2	1,610	1,295	1,205	970	1,665	1,335	1,250	1,000			
72	41/2	8	1,730	1,660	1,295	1,245	—	_	—	—			
5/8	3%	5½	1,605	1,135	1,205	855	—		—	—			
78	5%	10	3,250	2,615	2,440	1,960	_		—	—			
3⁄4	41⁄8	6¾	2,780	1,970	2,085	1,475	_		—	—			

1. Tension design strengths (SD level) are based on the strength design provisions of ACI 318-14 Chapter 17.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, $\phi,$ is based on using a load combination from ACI 318-14 Section 5.3.

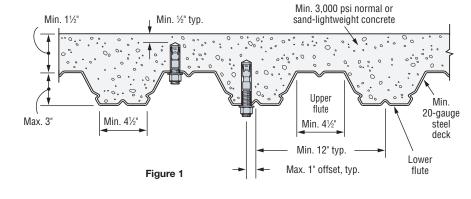
5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

8. Installation must comply with Figure 1.

Stainless Steel Strong-Bolt[®] 2 **Allowable** Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f'_c = 3000 psi) — Static Load


	Nominal	Minimum End	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Embed. Depth	Distance c _{min}	Lowei	^r Flute	Upper Flute				
	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked			
3/	2	31⁄4	730	570	925	720			
3/8	33⁄8	6	1,835	1,210					
1/	2¾	41/2	1,150	925	1,190	955			
1/2	41/2	8	1,235	1,185					
5/	33⁄8	51/2	1,145	810	—	—			
5/8	5%	10	2,320	1,870	—	—			
3⁄4	41⁄8	6¾	1,985	1,405	—	—			

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 1.

IBC

IBC

Stainless Steel Strong-Bolt[®] 2 **Allowable** Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f_c = 3,000$ psi) – Wind Load

	Nominal	Minimum End	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Embed. Depth	Distance c _{min}	Lowei	r Flute	Upper Flute				
	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked			
3/8	2	31⁄4	615	480	775	605			
98	33⁄8	6	1,540	1,015	—	—			
1/2	23⁄4	41/2	965	775	1,000	800			
72	41/2	8	1,040	995	—	—			
5/8	33⁄8	51⁄2	965	680	—	—			
98	5%	10	1,950	1,570	—	—			
3⁄4	41⁄8	6¾	1,670	1,180	—	—			

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \%.6 = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Installation must comply with Figure 1 on page 18.

Stainless Steel Strong-Bolt[®] 2 **Allowable** Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f_c = 3,000$ psi) – Seismic Load

	Nominal Embed.	Minimum	Allowable Tension Load (lb.)										
Anchor		End		Lowe	r Flute			Upper Flute					
Dia. (in.)	Depth (in.)	Distance c _{min} (in.)	SDC A-B		SDC C-F		SDC A-B		SDC C-F				
	()		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked			
3/8	2	31⁄4	720	560	540	420	905	705	680	530			
98	33⁄8	6	1,800	1,185	1,215	800	—	—	—	—			
1/2	2¾	41⁄2	1,125	905	845	680	1,165	935	875	700			
72	41⁄2	8	1,210	1,160	905	870	—	—	—	—			
5/8	3%	51⁄2	1,125	795	845	600	—	_	—	_			
78	5%	10	2,275	1,830	1,710	1,370		—	—	—			
3⁄4	41⁄8	6¾	1,945	1,380	1,460	1,035	_		_	—			

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-14 Chapter 17 using a conversion factor of $\alpha = \frac{1}{2}.7 = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

2. Tabulated values are for a single anchor with no influence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

5. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-14 Section 17.2.3.

6. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-14 Section 17.2.3.4.4.

7. Installation must comply with Figure 1 on page 18.

Oberestavistis	Cumbal	Units		Nominal Anchor Diameter, d _a (in.)									
Characteristic	Symbol	Units	1⁄4	3	/8	1	/2	5,	/8	3	/4		
			Ins	tallation In	formation					,			
Nominal Diameter	d _a	in.	1/4 3/8		1	/2	5⁄8		3⁄4				
Drill Bit Diameter	d	in.	1⁄4	3⁄8 1⁄2		5	/8	3⁄4					
Baseplate Clearance Hole Diameter ²	d_c	in.	5⁄16	7,	7/16 9/16		16	11,	/16	7	/8		
Installation Torque	T _{inst}	ft-lbf	4	2	20	4	5	6	0	9	0		
Nominal Embedment Depth	h _{nom}	in.	1 3⁄4	1%	3%	2¾	41⁄2	3¾	5½	4	6¾		
Effective Embedment Depth	h _{ef}	in.	1½	1½	3	21⁄4	4	2¾	47⁄8	31⁄4	6		
Minimum Hole Depth	h _{hole}	in.	1 7⁄8	2	31⁄2	3	43⁄4	35⁄8	5¾	41⁄4	7		
Minimum Overall Anchor Length	$\ell_{\it anch}$	in.	31⁄4	3	5	3¾	5½	41⁄2	7	5½	81⁄2		
Critical Edge Distance	C _{ac}	in.	31⁄2	7	41⁄2	9	8	12	75/16	81⁄2	9		
Minimum Edge Distance	C _{min}	in.	11⁄2	31/2		31/2		3¾		4			
Minimum Luge Distance	for $s \ge$	in.			6	6		8		12			
Minimum Spacing	S _{min}	in.	11⁄2	2	1/2	2¾		3		31⁄2			
Minimum opacing	for $c \ge$	in.	—		6		8	8	3	8			
Minimum Concrete Thickness	h _{min}	in.	31⁄8	31⁄4	4¾	4	6	41⁄8	7	5¾	81⁄2		
				Additiona	l Data								
Yield Strength	f _{ya}	psi	56,000	92,	000	85,	000	85,	000	70,	000		
Tensile Strength	f _{uta}	psi	70,000	115	,000	115	,000	115	,000	110	,000		
Minimum Tensile and Shear Stress Area	A _{se}	in.²	0.0318	0.0	514	0.105		0.166		0.270			
Axial Stiffness in Service Load Range – Uncracked Concrete	β	lb./in.	186,460	431	,485	1,26	5,880	545,505		669,405			

Mechanically Galvanized Carbon Steel Strong-Bolt® 2 Installation Information and Additional Data¹

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

3. Mechanically Galvanized Strong-Bolt 2 installation in cracked concrete is outside the scope of this technical engineering bulletin.

a			Nominal Anchor Diameter, d _a (in.)								
Characteristic	Symbol	Units	1/4 3/8		/8	1/2		5⁄8		;	3⁄4
Anchor Category	1, 2 or 3	_		'			1	1			
Nominal Embedment Depth	h _{nom}	in.	1 3⁄4	1 1 1/8	3%	2¾	41⁄2	3%	51⁄2	4	6¾
	Steel Stre	ngth in Ten	sion (ACI 31	8-19 17.6.1	, ACI 318-14	4 17.4.1 or A	ACI 318-11 S	Section D.5.	1)		
Tension Resistance of Steel	N _{sa}	lb.	2,225	5,9)10	12,	075	19,	090	29	,700
Strength Reduction Factor – Steel Failure ²	$\phi_{\scriptscriptstyle SA}$	—					0.75				
Con	crete Breako	out Strength	in Tension	(ACI 318-19	17.6.2, ACI	318-14 17.4	4.2 or ACI 3 ⁻	18-11 Section	on D.5.2)		
Effective Embedment Depth	h _{ef}	in.	1 1/2	1 1/2	3	21⁄4	4	23⁄4	41⁄8	31⁄4	6
Critical Edge Distance	C _{ac}	in.	31⁄2	7	41⁄2	9	8	12	7 5⁄16	81⁄2	9
Effectiveness Factor – Uncracked Concrete	K _{uncr}	_	24	2	4	27	24	27	24	27	24
Strength Reduction Factor – Concrete Breakout Failure ²	$\phi_{\scriptscriptstyle Cb}$	_					0.65				
	Pullout Str	ength in Ter	ision (ACI 3	18-19 17.6.3	3, ACI 318-1	4 17.4.3 or	ACI 318-11	Section D.5	.3)		
Pullout Resistance – Uncracked Concrete (f' _c = 2,500 psi)	N _{p.uncr}	lb.	1,775⁵	2,170 ⁴	4,2406	N/A ³	9,0907	N/A ³	8,980 ⁴	N/A ³	11,560
Strength Reduction Factor – Pullout Failure ²	$\phi_{ ho}$	_		1			0.65				
	Steel Str	ength in Sh	ear (ACI 318	8-19 17.7.1,	ACI 318-14	17.5.1 or A	CI 318-11 S	ection D.6.1)		
Shear Resistance of Steel	V _{sa}	lb.	955	2,8	805	6,6	680	9,9	900	14	,645
Strength Reduction Factor – Steel Failure ²	ϕ_{sa}						0.65				
Сог	ncrete Break	out Strengtl	n in Shear (/	ACI 318-19 1	17.7.2, ACI 3	318-14 17.5	.2 or ACI 31	8-11 Sectio	n D.6.2)		
Outside Diameter	d _a	in.	0.25	0.3	375	0.	50	0.6	625	0	.75
oad-Bearing Length of Anchor in Shear	ℓ_e	in.	1.50	1.50	3.00	2.25	4.00	2.75	4.875	3.25	6.00
Strength Reduction Factor – Concrete Breakout Failure ²	$\phi_{\scriptscriptstyle Cb}$	_					0.70				
Co	oncrete Pryo	ut Strength	in Shear (A	CI 318-19 17	7.7.3, ACI 31	8-14 17.5.3	3 or ACI 318	-11 Section	D.6.3)		
Coefficient for Pryout Strength	k _{cp}	—	1.0	1.0	2.0	1.0	2.0	2	.0	2	2.0
Strength Reduction Factor – Concrete Pryout Failure ²	ϕ_{cp}			0.70							

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

 The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate strength reduction factor must be determined in accordance with ACI 318-11 D.4.4.

3. N/A (not applicable) denotes that pullout resistance does not need to be considered.

4. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺₀/2,500)^{0.5}.

5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺₂/2,500)^{0.11}.

6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f¹/2,500)^{0.23}.

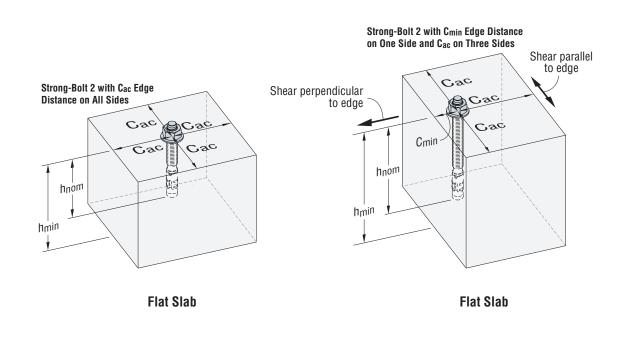
7. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f¹/2,500)^{0.24}.

8. Mechanically Galvanized Strong-Bolt 2 installation in cracked concrete is outside the scope of this technical engineering bulletin.

© 2024 Simpson Strong-Tie Company Inc. TEB-A-STB2-24

Mechanically Galvanized Carbon Steel Strong-Bolt® 2 Tension and Shear **Design Strengths** in Uncracked Normal-Weight Concrete ($f'_c = 2,500 \text{ psi}$)

	Nominal		Critical	Minimum	Tension Desig	n Strength (lb.)	Shear Design Strength (lb.)			
Anchor Embed. Dia. Depth (in.) (in.)	Embed. Depth	Concrete Thickness h _{min}	Edge Distance C _{ac}	Edge Distance C _{min}	Edge Distances =		Edge Distances =	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$		
	(in.)	(in.)	(in.)	C_{ac} on all sides	and c _{ac} on three sides	c_{ac} on all sides	\perp to edge	ll to edge		
1⁄4	1 3⁄4	31⁄8	31⁄2	1 1⁄2	1,155	690	620	450	490	
3/8	1 7⁄8	31⁄4	7	31⁄2	1,410	715	1,545	770	770	
78	33⁄8	43⁄4	4 1⁄2	31⁄2	2,755	2,755	1,675	1,675	1,390	
1/2	23⁄4	4	9	31⁄2	2,960	1,150	3,190	1,240	1,240	
72	4 1/2	6	8	31⁄2	5,910	3,240	3,920	2,405	2,345	
5/8	33⁄8	47⁄8	12	3¾	4,000	1,275	5,260	2,465	2,740	
78	51⁄2	7	75⁄16	3¾	5,835	5,420	4,305	2,970	2,780	
3⁄4	4	5¾	81⁄2	4	5,140	2,540	4,420	3,120	2,735	
94	6¾	81⁄2	9	4	7,515	6,900	6,300	3,530	3,790	


1. Tension and Shear design strengths (SD level) are based on the strength design provisions of ACI 318-19 Chapter 17.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-19 Section 5.3.

5. The Designer of Record is responsible for the foundation design.

SIMPSON Strong-Tie

Mechanically Galvanized Carbon Steel Strong-Bolt[®] 2 **Allowable** Tension and Shear Loads in Uncracked Normal-Weight Concrete ($f_c = 2,500 \text{ psi}$) - Static Load

Nominal		Min.	Critical	Minimum	Allowable Ten	sion Load (lb.)	Allowable Shear Load (lb.)			
Anchor Dia. (in.) (in.)	Embed. Depth	Concrete Thickness h _{min}	Edge Distance C _{ac}	Edge Distance c _{min}	Edge Distances =		Edge Distances =	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$		
	(in.)	(in.)	(in.)	(in.)	c _{ac} on all sides	and c _{ac} on three sides	c_{ac} on all sides	\perp to edge	ll to edge	
1⁄4	1 3⁄4	31⁄8	31⁄2	1 1⁄2	825	495	445	320	350	
3/8	1 1 1/8	31⁄4	7	31⁄2	1,005	510	1,105	550	550	
78	3%	43⁄4	4 1⁄2	31⁄2	1,970	1,970	1,195	1,195	995	
1/2	23⁄4	4	9	31⁄2	2,115	820	2,280	885	885	
72	4 1⁄2	6	8	31⁄2	4,220	2,315	2,800	1,720	1,675	
5/8	3%	47⁄8	12	3¾	2,855	910	3,755	1,760	1,955	
-78	5½	7	75⁄16	3¾	4,170	3,870	3,075	2,120	1,985	
3⁄4	4	5¾	81⁄2	4	3,670	1,815	3,155	2,230	1,955	
94	6¾	81⁄2	9	4	5,370	4,930	4,500	2,520	2,705	

1. Allowable loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The Designer of Record is responsible for the foundation design.

Mechanically Galvanized Carbon Steel Strong-Bolt[®] 2 **Allowable** Tension and Shear Loads in Uncracked Normal-Weight Concrete ($f_c = 2,500 \text{ psi}$) - Wind Load

	Nominal	Min.	Critical Edge Distance Cac	Minimum	Allowable Ten	sion Load (lb.)	Allowable Shear Load (lb.)			
Anchor Embed. Dia. Depth (in.) (in.)	Embed. Depth	Concrete Thickness h _{min}		Edge Distance C _{min}	Edge Distances =		Edge Distances =	$\begin{array}{l} \mbox{Edge Distances} = c_{min} \mbox{ on one side} \\ \mbox{ and } c_{ac} \mbox{ on three sides} \end{array}$		
	(in.)	(in.)	(in.)	C _{ac} on an sides	and c _{ac} on three sides	c_{ac} on all sides	\perp to edge	ll to edge		
1⁄4	1 3⁄4	31⁄8	31⁄2	1½	695	415	370	270	295	
3/8	1 7⁄8	31⁄4	7	31⁄2	845	430	925	460	460	
98	3%	43⁄4	41⁄2	31⁄2	1,655	1,655	1,005	1,005	835	
1/2	23⁄4	4	9	31⁄2	1,775	690	1,915	745	745	
/2	41⁄2	6	8	31⁄2	3,545	1,945	2,350	1,445	1,405	
5/8	3%	41⁄8	12	3¾	2,400	765	3,155	1,480	1,645	
98	5½	7	75⁄16	3¾	3,500	3,250	2,585	1,780	1,670	
3/4	4	5¾	81⁄2	4	3,085	1,525	2,650	1,870	1,640	
74	6¾	81⁄2	9	4	4,510	4,140	3,780	2,120	2,275	

1. Allowable tension loads are calculated based on the strength design provision of ACI 318-19 Chapter 17 using a conversion factor of $\alpha = \frac{1}{6.6} = 1.67$. The conversion factor α is based on the load combination assuming 100% wind load.

2. Tabulated values are for a single anchor with no infuence of another anchor.

3. Interpolation between embedment depths is not permitted.

4. The Designer of Record is responsible for the foundation design.

* See page 3 for an explanation of the load table icons.

This technical bulletin is effective until December 31, 2025, and reflects information available as of October 1, 2024. This information is updated periodically and should not be relied upon after December 31, 2025; contact Simpson Strong-Tie for current information and limited warranty or see **strongtie.com**.

(800) 999-5099 strongtie.com

© 2024 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588

TEB-A-STB2-24 10/24 exp. 12/25